Aviumtechnologies APM Docs
  • Introduction to APM
  • Quick start
    • Set up your licence key
  • Release notes
  • User guide
    • The configuration file
      • Calculating pressure
      • Calculating skin friction
      • Creating control surfaces
      • Creating actuator disks
    • The mesh file
      • Creating meshes
        • OpenVSP
        • SUMO
    • Preprocessor
    • Solver
      • Steady simulations
      • Unsteady simulations
      • Symmetry
      • Wake
        • Interaction with the body
        • Viscous vortex particle wake
    • Output files
  • Examples
  • Sphere
  • Ellipsoid
  • NACA4412 wing
  • NACA0015 wing
  • Caradonna-Tung rotor in hover
  • NREL Phase IV wind turbine
  • AGARD-AR-303 E6
  • Wing-tail configuration
  • Fixed-wing UAV
  • Aerosonde UAV
Powered by GitBook
On this page
  • Files
  • References

Was this helpful?

Ellipsoid

Example simulation of an ellipsoid

PreviousSphereNextNACA4412 wing

Last updated 11 months ago

Was this helpful?

An ellipsoid with dimensions (semiaxes) Lx=2a=8L_{x}=2a=8Lx​=2a=8m, Ly=2b=4L_{y}=2b=4Ly​=2b=4m, Lz=2c=2L_{z}=2c=2Lz​=2c=2m at an angle of attack of α=15\alpha=15α=15deg and sideslip angle of β=10\beta=10β=10deg is considered. The magnitude of the freestream velocity is ∣Vref∣=1|\mathbf{V}_{ref}|=1∣Vref​∣=1m/s. An unstructured mesh of 14924 elements is used. Similarly to the sphere, an analytical solution for the perturbation and total potential around the ellipsoid exists [1]. The perturbation (doublet) potential is given by:

ϕ=ϕx+ϕy+ϕz=xuabcαλ2−αλ+yvabcβλ2−βλ+zwabcγλ2−γλ,\phi = \phi_{x} + \phi_{y} +\phi_{z} = xuabc\frac{\alpha_{\lambda}}{2-\alpha_{\lambda}} + yvabc\frac{\beta_{\lambda}}{2-\beta_{\lambda}} + zwabc\frac{\gamma_{\lambda}}{2-\gamma_{\lambda}}\text{,}ϕ=ϕx​+ϕy​+ϕz​=xuabc2−αλ​αλ​​+yvabc2−βλ​βλ​​+zwabc2−γλ​γλ​​,

where αλ\alpha{\lambda}αλ, βλ\beta{\lambda}βλ and γλ\gamma_{\lambda}γλ​ are integrals given by:

αλ=∫λ∞dλ(a2+λ)(a2+λ)(b2+λ)(c2+λ)βλ=∫λ∞dλ(b2+λ)(a2+λ)(b2+λ)(c2+λ)γλ=∫λ∞dλ(c2+λ)(a2+λ)(b2+λ)(c2+λ).\alpha_{\lambda}=\int_{\lambda}^{\infty} \frac{d\lambda}{(a^2+\lambda)\sqrt{(a^2+\lambda)(b^2+\lambda)(c^2+\lambda)}}\\ \beta_{\lambda}=\int_{\lambda}^{\infty} \frac{d\lambda}{(b^2+\lambda)\sqrt{(a^2+\lambda)(b^2+\lambda)(c^2+\lambda)}}\\ \gamma_{\lambda}=\int_{\lambda}^{\infty} \frac{d\lambda}{(c^2+\lambda)\sqrt{(a^2+\lambda)(b^2+\lambda)(c^2+\lambda)}}\text{.}αλ​=∫λ∞​(a2+λ)(a2+λ)(b2+λ)(c2+λ)​dλ​βλ​=∫λ∞​(b2+λ)(a2+λ)(b2+λ)(c2+λ)​dλ​γλ​=∫λ∞​(c2+λ)(a2+λ)(b2+λ)(c2+λ)​dλ​.

The solution of the αλ\alpha{\lambda}αλ, βλ\beta{\lambda}βλ and γλ\gamma{\lambda}γλ integrals is obtained with the aid of the incomplete elliptic integrals as explained in [2,4]. When the potential is evaluated at the surface of the ellipsoid λ\lambdaλ is set to 0. Numerical values of the incomplete elliptic integrals, along with values of the αλ\alpha{\lambda}αλ, βλ\beta{\lambda}βλ, γλ\gamma{\lambda}γλ integrals for any combinations of aaa, bbb, and ccc are given in [3]. The total potential is given by:

Φ=Φx+Φy+Φz=(ϕx+xu)+(ϕy+yv)+(ϕz+zw),\Phi = \Phi_{x} + \Phi_{y} + \Phi_{z} = (\phi_{x} + xu) + (\phi_{y} + yv) + (\phi_{z} + zw)\text{,}Φ=Φx​+Φy​+Φz​=(ϕx​+xu)+(ϕy​+yv)+(ϕz​+zw),

where Φ\PhiΦ is the total potential, ϕ\phiϕis the perturbation (doublet) potential, aaa,bbb, and ccc are the semiaxes of the ellipsoid,xxx, yyy, and zzz are the centroid coordinates of an element on the ellipsoid surface, uuu,vvv,and www are velocity components relative to the ellipsoid. The image blow shows the ellipsoid pressure coefficient.

The images below compare the perturbation potential and the total potential with the analytical solution.

As there is no analytical solution for the pressure coefficient at α=15\alpha=15α=15deg and β=10\beta=10β=10deg, the analytical solution for the pressure coefficient at α=β=0\alpha=\beta=0α=β=0deg is compared to the one from a simulation at the same conditions.

Good agreement between the simulation and the analytical solution is observed.

Files

References

[1] Craig, T., "On the Motion of an Ellipsoid in a Fluid", American Journal of Mathematics, Vol.2, No.3, 1879, pp. 260-279 [2] Byrd, P.F., "Handbook of Elliptic Integrals for Engineers and Scientists", Springer-Verlag, 1971, pp. 1-7, pp. 8-41 [3] Jones, R.T., "Classical Aerodynamic Theory", University Press of the Pacific, 2005 [4] Viana, F. and Fuanda, T. and Joseph, D.D. and Tashiro, N. and Sonoda, Y. "Potential flow of a second-order fluid over a tri-axial ellipsoid", J. Appl. Math., Vol.4, 2005, pp. 341-364

863KB
ellipsoid.zip
archive